Improved estimators for a general class of beta regression models
نویسندگان
چکیده
In this paper we consider an extension of the beta regression model proposed by Ferrari and Cribari-Neto (2004). We extend their model in two different ways, first, we let the regression structure be nonlinear, second, we allow a regression structure for the precision parameter, moreover, this regression structure may also be nonlinear. Generally, the beta regression is useful to situations where the response is restricted to the standard unit interval and the regression structure involves regressors and unknown parameters. We derive general formulae for second-order biases of the maximum likelihood estimators and use them to define bias-corrected estimators. Our formulae generalizes the results obtained by Ospina et al. (2006), and are easily implemented by means of supplementary weighted linear regressions. We also compare these bias-corrected estimators with three different estimators which are also bias-free to the second-order, one analytical and the other two based on bootstrap methods. These estimators are compared by simulation. We present an empirical application.
منابع مشابه
On Mathematical Characteristics of some Improved Estimators of the Mean and Variance Components in Elliptically Contoured Models
In this paper we treat a general form of location model. It is typically assumed that the error term is distributed according to the law belonging to the class of elliptically contoured distribution. Some sorts of shrinkage estimators of location and scale parameters are proposed and their exact bias and MSE expressions are derived. The performance of the estimators under study are compl...
متن کاملGeneralized Ridge Regression Estimator in Semiparametric Regression Models
In the context of ridge regression, the estimation of ridge (shrinkage) parameter plays an important role in analyzing data. Many efforts have been put to develop skills and methods of computing shrinkage estimators for different full-parametric ridge regression approaches, using eigenvalues. However, the estimation of shrinkage parameter is neglected for semiparametric regression models. The m...
متن کاملBayesian Inference for Spatial Beta Generalized Linear Mixed Models
In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...
متن کاملPenalized Estimators in Cox Regression Model
The proportional hazard Cox regression models play a key role in analyzing censored survival data. We use penalized methods in high dimensional scenarios to achieve more efficient models. This article reviews the penalized Cox regression for some frequently used penalty functions. Analysis of medical data namely ”mgus2” confirms the penalized Cox regression performs better than the cox regressi...
متن کاملEstimation of Lower Bounded Scale Parameter of Rescaled F-distribution under Entropy Loss Function
We consider the problem of estimating the scale parameter &beta of a rescaled F-distribution when &beta has a lower bounded constraint of the form &beta&gea, under the entropy loss function. An admissible minimax estimator of the scale parameter &beta, which is the pointwise limit of a sequence of Bayes estimators, is given. Also in the class of truncated linear estimators, the admissible estim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computational Statistics & Data Analysis
دوره 54 شماره
صفحات -
تاریخ انتشار 2010